Search for Evidence for a Tau Neutrino Magnetic Moment

Reinhard Schwienhorst

Fermilab E872

University of Minnesota • High Energy Physics

Outline

- Introduction
- Theory
- Analysis steps
- Monte Carlo
- Results (preliminary)
- Remaining issues
- Conclusions
- Outlook

Thesis Goal: $\mu_{\nu\tau}$

- Find interactions that are consistent with a tau neutrino magnetic moment
- if none are found: set a new upper limit for $\mu_{\nu\tau}$
- current experimental limit:

$$- \nu_e$$
: $\mu_v < 1.8 \times 10^{-10} \mu_B$

$$- \nu_{\mu}$$
: μ_{ν} <7.4×10⁻¹⁰ $\mu_{\rm B}$

$$- \nu_{\tau}$$
: μ_{ν} < 5.4 × 10⁻⁷ μ_{B}

Physics process

- v-e scattering
 - electrons from the atomic shell
- differential cross section

$$\sigma^{\mu} = \int_{T_{\min}}^{1} \frac{\mu_{\nu}^{2}}{\mu_{B}^{2}} \frac{\pi \alpha^{2}}{m_{e}^{2}} \left(\frac{E_{\nu}}{T} - 1\right) dT$$

- E_v = incoming neutrino energy; T = outgoing electron energy
- total cross section $\sim \ln(E_v/T_{min})$
- event signature:
 production of a single, low energy electron

MC

- Standard E872 MC package with
 - magnetic moment scattering routine
 - produce single electrons from v_{τ} -electron magnetic moment interactions
 - weigh by $log(E_v)$ instead of E_v
- trigger acceptance=0.54
 - varies by module

Electron energy and angle

Production angle and energy for the electron in a magnetic moment interaction

Typical magnetic moment interaction

0.3522 -0.1894 0.1766 4 0.3054 -0.1874 0.1781 1

Analysis: Last step, limit for $\mu_{\nu\tau}$

- Limit: $\mu_{v\tau} < \mu_{max}$
- μ_{max} is determined by the upper limit for the cross section:

$$\sigma_{\text{max}}^{\mu} = \int_{T_{\text{min}}}^{1} \frac{\mu_{\text{max}}^2}{\mu_B^2} \frac{\pi \alpha^2}{m_e^2} \left(\frac{E_v}{T} - 1\right) dT$$

Step 4: Visible cross section

• The cross section σ^{μ}_{max} is calculated from the visible cross section σ^{μ}_{vis} and the acceptance A

$$\sigma_{\max}^{\mu} = \frac{\sigma_{\text{vis}}^{\mu}}{A}$$

- An upper limit for the visible cross section is calculated from
 - observed cross section for candidate events (σ_{obs})
 - expected cross section for candidate events for $\mu_{v\tau}=0$ (σ_{exp})
 - the total error on the cross section (error $_{\sigma}$)
- 90% confidence limit for σ^{μ}_{vis} :

$$\sigma_{\text{vis}}^{\mu} = 1.64 \text{ error}_{\sigma} + (\sigma_{\text{obs}} - \sigma_{\text{exp}})$$

Step 3: Total error

$$\frac{\text{error}_{\sigma}^{2}}{\sigma} = \sqrt{\frac{\text{error}_{\text{obs}}^{2}}{\sigma_{\text{obs}}^{2}} + \frac{\text{error}_{\text{exp}}^{2}}{\sigma_{\text{exp}}^{2}}}$$

- The error on σ_{obs} (error_{obs}) depends on
 - the number of observed candidate events (N_{obs})
 - our knowledge of the total neutrino flux $(error_{v flux})$ and total target mass $(error_{M})$

$$\frac{\text{error}_{\text{obs}}^{2}}{\sigma_{\text{obs}}} = \sqrt{\frac{\left(N_{\text{obs}} - 1\right)}{N_{\text{obs}}^{2}} + \frac{\text{error}_{\nu \text{ flux}}^{2}}{\left(\nu \text{ flux}\right)^{2}} + \frac{\text{error}_{M}^{2}}{M^{2}}}$$

Step 2: Error on the expected cross section

- Determine with the Monte Carlo
- depends on
 - total neutrino flux and spectrum
 - detector acceptance and efficiency
 - acceptance for the various cuts
 - number of generated MC events

Step 1: Event selection

- Start with .nustrip files
 - Known acceptance (MC)
 - Includes low-energy events
 - many events ↔ few neutrino interactions
- Software cuts
 - Reduce number of events by a factor of 400
 - Acceptance for candidate events is $\approx 40\%$
- Visual event classification
 - separate noise from neutrino interactions
 - reduction factor is 7
 - Acceptance ≈90%
- Neutrino event characterization
 - identify CC and NC interactions
 - emulsion analysis

Software cuts

- Remove muons
 - muon ID
 - EMCAL (track P/E)
- Remove hadrons
 - long SF lines (track does not shower in a module)
- Remove v_e CC events
 - EMCAL energy(>20GeV)
- Remove non-v events
 - backwards trigger
 - trigger hits behind the vertex

- Require v-e scattering event pattern
 - straight SF lines
 (<0.1rad)</pre>
 - hits behind the vertex in trigger, VC
 - no energy at the edge of the EMCAL
- Compare MC and data for each cut with $v_{\mu}CC$ events

Thesis update

Check software cuts with $v_{\mu}CC$ events: comparison MC/data

$$R = \frac{\text{cut events}}{\text{all events}}$$

Thesis update

Detailed cuts 1

Muon ID

- remove muons and hadrons
- watch out for noise
- → require <2 MID hits (sum over all tracks)

• EMCAL

- require E_{EMCAL}<20GeV
- require for each track with P>4GeV that E_{EMCAL}<P/2 for blocks within 0.2m of the track
- check the rectangle with $|x-x_{vtx}|<0.7m$ and $|y-y_{vtx}|<0.2m$:
 - require at least 50% of the EMCAL energy to be inside the rectangle
 - require the energy outside the rectangle to be less than 1GeV

Detailed cuts 2

• SF system:

- remove events with:
 - hadrons: highly ionizing tracks (large fiber pulseheight)
 - tracks not coming from the emulsion (muons interacting in the shielding)
 - tracks that go straight through a module (electrons are required to shower)
- require at least one straight SF line in each view (<0.1rad)
 - put the vertex at the origin of this line
- require the vertex to be in the emulsion volume

Detailed cuts 3

- Trigger counters:
 - remove backward trigger

```
O O O O O O O T1
O O X X O O O O O T2
O O X O O O O T3
```

 require a trigger panel hit on a straight line behind the vertex

• VDC:

require VDC hits on a straight line behind the vertex

Visual event selection

- Output of software cuts is mostly garbage
 - non-neutrino events
- → visual neutrino event selection is necessary
 - analysis of $\nu_{\mu}CC$ events shows how to get high efficiency
 - be slow and careful
 - don't throw away the little ones

Event classification

- Remaining events:
 - out of time showers
 - remove if pulseheight in each shower track
 - < minimum ionization
 - neutral current interactions
 - recognize and remove hadrons
 - isolated large pulseheight tracks
 - tracks that enter a module and exit it without producing a shower
 - candidate events
 - keep them

(67)

Preliminary result: # of events (in mod 1-3, period 4)

- Observed: 3 event candidates
 - cross section = 3.6×10^{-38} cm²
 - \rightarrow error $\approx 60\%$
- neutrino beam calculation: error $\approx 30\%$
- $\rightarrow \text{error}_{\text{obs}} = 60\% \text{ (2 events)}$
- expected: 4 events
 - cross section = 4.8×10^{-38} cm²
 - most of them NC interactions
- estimated error_{exp} $\approx 20\%$ (0.5 events)
- \rightarrow error_{σ} \approx 65% (2.1 events) cross section=2.5×10⁻³⁸cm² Thesis update

Preliminary result:

cross section (only mod 1-3 in period 4)

$$\sigma_{\text{vis}}^{\mu} = \underbrace{1.64 \times 2.5 \times 10^{-38}}_{=4.1 \times 10^{-38}} + \underbrace{\left(3.6 \times 10^{-38} - 4.8 \times 10^{-38}\right)}_{<0, \text{ set to } 0} cm^{2}$$
$$= 4.1 \times 10^{-38} cm^{2}$$

and

$$\sigma_{\text{max}}^{\mu} = \frac{4.1 \times 10^{-38} cm^2}{0.62 \times 0.4}$$
$$= 1.7 \times 10^{-37} cm^2$$

• This corresponds to a limit for the magnetic moment of

$$\mu_{\nu_{\tau}} < 3.9 \times 10^{-7} \,\mu_{B}$$

Issues

- There are many interactions in module 4
 - single hadrons (Alex: N→P)
 - photon conversions
 - low-energy neutrino interactions
 - nonprompt neutrinos
- The detector analysis/simulation need to be improved
 - work in progress
 - EMCAL
 - muon ID
- What is the number of tau neutrinos?

Conclusions

- No evidence for a large $\mu_{\nu\tau}$ has been found
- We will be able to set a new upper limit for $\mu_{\nu\tau}$
 - The limit will be better than the current upper limit ($\mu_{v\tau}$ <5.4×10⁻⁷ μ_B)
- Finding τ neutrino interactions will not improve the limit
 - but it will increase our confidence in the result

Outlook

- I will complete the data analysis for periods 1,2,3
- I will complete the MC analysis
 - calculation of the number of expected events
- I will study the acceptance of my visual selection